Effectivity of Brauer–manin Obstructions on Surfaces

نویسنده

  • ANDREW KRESCH
چکیده

We study Brauer–Manin obstructions to the Hasse principle and to weak approximation on algebraic surfaces over number fields. A technique for constructing Azumaya algebra representatives of Brauer group elements is given, and this is applied to the computation of obstructions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effectivity of Brauer–manin Obstructions

We study Brauer–Manin obstructions to the Hasse principle and to weak approximation, with special regard to effectivity questions.

متن کامل

Effective Computation of Picard Groups and Brauer-manin Obstructions of Degree Two K3 Surfaces over Number Fields

Using the Kuga-Satake correspondence we provide an effective algorithm for the computation of the Picard and Brauer groups of K3 surfaces of degree 2 over number fields.

متن کامل

Transcendental Obstructions to Weak Approximation on General K3 Surfaces

We construct an explicit K3 surface over the field of rational numbers that has geometric Picard rank one, and for which there is a transcendental Brauer-Manin obstruction to weak approximation. To do so, we exploit the relationship between polarized K3 surfaces endowed with particular kinds of Brauer classes and cubic fourfolds.

متن کامل

On the Brauer–manin Obstruction for Integral Points

We give examples of Brauer–Manin obstructions to integral points on open subsets of the projective plane.

متن کامل

Two Examples of Brauer–manin Obstruction to Integral Points

We give two examples of Brauer–Manin obstructions to integral points on open subsets of the projective plane.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009